TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>1. BACKGROUND</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>4</td>
</tr>
<tr>
<td>1.2 Epidemiology and risk factors</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Managing ED: implications for everyday clinical practice</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. DIAGNOSIS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Basic work-up</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Sexual history</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Physical examination</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3 Laboratory testing</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Cardiovascular system and sexual activity: the patient at risk</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Low-risk category</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Intermediate-risk, or indeterminate-risk, category</td>
<td>7</td>
</tr>
<tr>
<td>2.2.3 High-risk category</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Specialized diagnostic tests</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1 Nocturnal penile tumescence and rigidity (NPTR)</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2 Intracavernous injection test</td>
<td>8</td>
</tr>
<tr>
<td>2.3.3 Duplex ultrasound of penile arteries</td>
<td>8</td>
</tr>
<tr>
<td>2.3.4 Arteriography and dynamic infusion cavernosometry or cavernosography</td>
<td>9</td>
</tr>
<tr>
<td>2.3.5 Psychiatric assessment</td>
<td>9</td>
</tr>
<tr>
<td>2.3.6 Penile abnormalities</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Patient education - consultation and referrals</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. TREATMENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Treatment options</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Lifestyle management in ED with concomitant risk factors</td>
<td>11</td>
</tr>
<tr>
<td>3.3 ‘Curable’ causes of ED</td>
<td>11</td>
</tr>
<tr>
<td>3.3.1 Hormonal causes</td>
<td>11</td>
</tr>
<tr>
<td>3.3.1.1 Testosterone replacement therapy</td>
<td>11</td>
</tr>
<tr>
<td>3.3.2 Post-traumatic arteriogenic ED in young patients</td>
<td>11</td>
</tr>
<tr>
<td>3.3.3 Psychosexual counselling and therapy</td>
<td>11</td>
</tr>
<tr>
<td>3.4 First-line therapy</td>
<td>11</td>
</tr>
<tr>
<td>3.4.1 Oral pharmacotherapy</td>
<td>11</td>
</tr>
<tr>
<td>3.4.1.1 Sildenafil</td>
<td>12</td>
</tr>
<tr>
<td>3.4.1.2 Tadalafil</td>
<td>12</td>
</tr>
<tr>
<td>3.4.1.3 Vardenafil</td>
<td>12</td>
</tr>
<tr>
<td>3.4.1.4 Choice or preference between the different PDE5 inhibitors</td>
<td>13</td>
</tr>
<tr>
<td>3.4.1.5 Safety issues for PDE5 inhibitors</td>
<td>13</td>
</tr>
<tr>
<td>Cardiovascular safety</td>
<td>13</td>
</tr>
<tr>
<td>Nitrates are totally contraindicated with PDE5 inhibitors</td>
<td>13</td>
</tr>
<tr>
<td>Antihypertensive drugs</td>
<td>14</td>
</tr>
<tr>
<td>Alpha blocker interactions</td>
<td>14</td>
</tr>
<tr>
<td>Dose adjustments</td>
<td>14</td>
</tr>
<tr>
<td>3.4.1.6 Apomorphine sublingual</td>
<td>14</td>
</tr>
<tr>
<td>3.4.1.7 Other oral agents</td>
<td>14</td>
</tr>
<tr>
<td>3.5 Topical pharmacotherapy</td>
<td>15</td>
</tr>
<tr>
<td>3.6 Vacuum constriction devices</td>
<td>15</td>
</tr>
<tr>
<td>3.7 Second-line therapy</td>
<td>15</td>
</tr>
<tr>
<td>3.7.1 Intracavernous injections</td>
<td>15</td>
</tr>
<tr>
<td>3.7.1.1 Alprostadil</td>
<td>15</td>
</tr>
<tr>
<td>Action to be taken with prolonged erection</td>
<td>16</td>
</tr>
<tr>
<td>3.7.1.2 Combination therapy</td>
<td>16</td>
</tr>
<tr>
<td>3.7.1.3 Intraurethral alprostadil</td>
<td>16</td>
</tr>
<tr>
<td>3.8 Third-line therapy</td>
<td>16</td>
</tr>
<tr>
<td>3.8.1 Penile prosthesis</td>
<td>16</td>
</tr>
</tbody>
</table>
1. BACKGROUND

1.1 Introduction
The introduction of new oral therapies has completely changed the diagnostic and therapeutic approach to erectile dysfunction (ED) (impotence). A panel of experts in this field has been established by the Guidelines Office of EAU in order to update previous published guidelines for clinical evaluation and treatment (1).

The update has been based on a review of available scientific information, as well as on current research and clinical practice in the field. Moreover, the panel has identified critical problems and knowledge gaps, setting priorities for future clinical research.

1.2 Epidemiology and risk factors
Male erectile dysfunction has been defined as the persistent inability to attain and maintain an erection sufficient to permit satisfactory sexual performance. Although ED is a benign disorder, it is related to physical and psychosocial health, and has a significant impact on the quality of life of both sufferers and their partners and families.

Recent epidemiological data have shown a high prevalence and incidence of ED worldwide. The first large-scale, community-based study, Massachusetts Male Aging Study (MMAS), reported a combined prevalence of 52% ED in non-institutionalized 40 to 70-year-old men in the Boston area (2). In this study, the individual prevalences were 17.2, 25.2 and 9.6 for minimal, moderate and complete ED, respectively. In the Cologne study (men 30-80 years old), the prevalence of ED was 19.2%, with a steep age-related increase (2.3-53.4%) (3), while the prevalence of sexual dysfunctions (not specific ED) in the National Health and Social Life Survey was 31% (4). Analysis of the longitudinal results from the MMAS study estimated that the incidence of ED was 26 new cases per 1000 men annually (5), while the incidence rates (new cases per 1000 men annually) of ED in a Brazilian (6) and in a Dutch (7) study were estimated at 65.6 (mean follow-up 2 years) and 19.2 (mean follow-up 4.2 years), respectively. Differences in these studies can be explained by the methodology design of the different surveys, the age and the socio-economic status of the populations studied.

Erection is a neurovascular phenomenon under hormonal control. It includes arterial dilatation, trabecular smooth muscle relaxation and activation of the corporeal veno-occlusive mechanism (8). Several risk factors have been identified based on our knowledge of the physiology of erection. Actually, it has become clear that ED shares common risk factors with cardiovascular disease, such as a lack of exercise, obesity, smoking, hypercholesterolaemia and the metabolic syndrome. Several lifestyle risk factors can be modified. In the MMAS, men who initiated physical activity in midlife had a 70% reduced risk for ED relative to those who remained sedentary, while in its longitudinal results, regular exercising showed a significantly lower incidence of ED over an 8-year follow up period (9). A multicentre, randomized, open-label study compared 2 years of intensive exercise and weight loss with an educational control in obese men with moderate ED (10).

Significant improvements in body mass index (BMI) and physical activity scores, as well as in erectile function, were observed in the lifestyle intervention group, while those changes were highly correlated with both weight loss and activity levels. However, it should be emphasized that controlled prospective studies are necessary to determine the effects of exercise or other lifestyle changes in prevention or treatment of ED.

1.3 Managing ED: implications for everyday clinical practice
The advances in basic and clinical research in ED made during the last 15 years have led to the development of several new treatment options for ED, including new pharmacological agents for intracavernous, intraurethral, and, more recently, oral use (11-13). Reconstructive vascular surgery is associated with poor outcomes in long-term follow-up (14,15). As a result, treatment strategies have been significantly modified.

The current availability of effective and safe oral drugs for ED, together with the tremendous media interest in this condition, has resulted in an increasing number of men seeking help for ED. Many physicians without background knowledge and clinical experience of the diagnosis and treatment of ED are involved in decision-making concerning the evaluation and treatment of these men. Therefore, some men with ED may undergo little or no evaluation before treatment is initiated, or men without ED may seek treatment in order to enhance their sexual performance. In such circumstances, the underlying disease causing the symptom (i.e. ED) may remain untreated. Such observations have made the development of guidelines for the diagnosis and treatment of ED a necessity.
2. DIAGNOSIS

2.1 Basic work-up
A detailed medical and psychological history of patients and partners must always be the first step in the evaluation of ED (16,17). Although it may not often be possible to involve the partner on the first visit, an effort should be made to involve the partner during the second visit. The medical history will reveal many common disorders that are associated with ED. Pathophysiology of ED may be vasculogenic, neurogenic, hormonal, anatomical, drug-induced or psychogenic in nature (Table 1) (18).

It is important to establish a relaxed atmosphere during history-taking in order to permit questions about erectile function and other aspects of sexual history, even when men do not volunteer to describe their problem. Such an atmosphere will facilitate communication between the physician, the patient and his partner in order to explain the strategy behind the diagnostic and therapeutic approach.

Table 1: Pathophysiology of erectile dysfunction

- **Vasculogenic**
 - Cardiovascular disease
 - Hypertension
 - Diabetes mellitus
 - Hyperlipidaemia
 - Smoking
 - Major surgery or radiotherapy (pelvis or retroperitoneum)
- **Neurogenic**
 - **Central causes**
 - Multiple sclerosis
 - Multiple atrophy
 - Parkinson’s disease
 - Tumours
 - Stroke
 - Disk disease
 - Spinal cord disorders
 - **Peripheral causes**
 - Diabetes mellitus
 - Alcoholism
 - Uraemia
 - Polyneuropathy
 - Surgery (pelvis or retroperitoneum)
- **Anatomical/structural**
 - Peyronie’s disease
 - Penile fracture
 - Congenital curvature of the penis
 - Micropenis
 - Hypospadias, epispadias
- **Hormonal**
 - Hypogonadism
 - Hyperprolactinemia
 - Hyper- and hypothyroidism
 - Cushing’s disease
- **Drug-induced**
 - Antihypertensives (of all classes, most common by diuretics and betablockers)
 - Antidepressants
 - Antipsychotics
 - Antiandrogens
 - Antihistamines
 - Recreational drugs (heroin, cocaine, methadone)
- **Psychogenic**
 - Generalized type (e.g. lack of arousability and disorders of sexual intimacy)
 - Situational type (e.g. partner-related, performance-related issues or due to distress)
2.1.1 Sexual history
The sexual history may include information about previous and current sexual relationships, current emotional status, onset and duration of the erectile problem, as well as possible previous consultations and treatments. Detailed descriptions of the quality of both erotic and morning erections, in terms of rigidity and duration, as well as arousal, ejaculation and orgasmic problems, should be made. The use of validated questionnaires, such as the International Index for Erectile Function (IIEF), may be helpful in order to assess all sexual function domains (erectile function, orgasmic function, sexual desire, ejaculation, intercourse and overall satisfaction), but also the impact of a specific treatment modality (19).

2.1.2 Physical examination
A focused physical examination must be performed on every patient, with particular emphasis on the genitourinary, endocrine, vascular and neurological systems (16). The physical examination may reveal unsuspected findings, such as Peyronie’s disease, prostatic enlargement or cancer, as well as the signs and symptoms indicative of hypogonadism (small testes, alterations in secondary sexual characteristics, diminished sexual desire, and changes in mood) (17). A rectal examination should be performed in every patient older than 50 years. Blood pressure and heart rate should be measured if they have not been assessed in the previous 3-6 months. Particular attention must be given to patients with cardiovascular disease (see Section 2.2).

2.1.3 Laboratory testing
Laboratory testing must be tailored to the patient complaints and risk factors. All patients must undergo a fasting glucose and lipid profile if not assessed in the previous 12 months. Hormonal tests must include a
morning sample of total testosterone (bio-available or calculated-free testosterone is more reliable to establish the presence of hypogonadism. These tests, if available, are preferable to total testosterone.

Additional laboratory tests must be considered only in selected patients (e.g. prostate-specific antigen [PSA] for detection of prostate cancer).

Additional hormonal tests (e.g. prolactin, follicle-stimulating hormone [FSH], luteinizing hormone [LH]) must be carried out when low testosterone levels are detected. If any abnormality is observed, further investigation by referral to another specialist may be necessary (20,21). The minimal diagnostic evaluation (basic work-up) in patients with erectile dysfunction is presented in Figure 1.

2.2 Cardiovascular system and sexual activity: the patient at risk

There is a high prevalence of cardiovascular disease among patients seeking treatment for sexual dysfunction and the potential cardiac risks associated with sexual activity are well established. Furthermore, recent epidemiological studies have underscored the association between cardiovascular and metabolic risk factors and sexual dysfunction in both men and women (3,22).

The pharmacological properties of phosphodiesterase (PDE) type 5 inhibitors, including their effects on cardiac smooth muscle activity and overall cardiovascular safety, have similarly been intensively investigated. In light of these developments, a consensus conference on sexual dysfunction and cardiac risk was convened on June 4-5, 1999, in Princeton, New Jersey (23), which was updated on June 11-12, 2004 (Second conference on sexual dysfunction, J Am Coll Cardiol, in press). The proposed management recommendations have been adapted by the current panel.

Patients with ED initiating or resuming sexual activity can be stratified into three risk categories (Table 2). Exercise tolerance, as determined from the history, can guide the clinician in estimating the risk of sexual activity in most instances. A treatment algorithm based on cardiovascular risk profile is presented in Figure 2.

Table 2: Cardiac risk stratification

<table>
<thead>
<tr>
<th>Low-risk category</th>
<th>Intermediate-risk category</th>
<th>High-risk category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic, < 3 risk factors for CAD (excluding gender)</td>
<td>≥ 3 risk factors for CAD (excluding gender)</td>
<td>High-risk arrhythmias</td>
</tr>
<tr>
<td>Mild, stable angina (evaluated and/or being treated)</td>
<td>Moderate, stable angina</td>
<td>Unstable or refractory angina</td>
</tr>
<tr>
<td>Uncomplicated past MI</td>
<td>Recent MI (> 2, < 6 weeks)</td>
<td>Recent MI (< 2 weeks)</td>
</tr>
<tr>
<td>LVD/CHF (NYHA class I)</td>
<td>LVD/CHF (NYHA class II)</td>
<td>LVD/CHF (NYHA class III/IV)</td>
</tr>
<tr>
<td>Post-successful coronary revascularization</td>
<td>Non-cardiac sequelae of atherosclerotic disease (e.g. stroke, peripheral vascular disease)</td>
<td>Hypertrophic obstructive and other cardiomyopathies</td>
</tr>
<tr>
<td>Controlled hypertension</td>
<td>Uncontrolled hypertension</td>
<td></td>
</tr>
<tr>
<td>Mild valvular disease</td>
<td>Moderate-to-severe valvular disease</td>
<td></td>
</tr>
</tbody>
</table>

CAD, coronary artery disease; CHF, congestive heart failure; LVD, left ventricular dysfunction; MI, myocardial infarction; NYHA, New York Heart Association.

2.2.1 Low-risk category

The low-risk category includes patients who do not have any significant cardiac risk associated with sexual activity. The ability to perform exercise of modest intensity (e.g. 6 or more metabolic equivalents of energy expenditure in the resting state [METs]) without symptoms typically implies low risk. Based upon current knowledge of the exercise demands or emotional stress associated with sexual activity, no special cardiac testing or evaluation is indicated for these patients before the initiation or resumption of sexual activity or therapy for sexual dysfunction.

2.2.2 Intermediate-risk, or indeterminate-risk, category

The intermediate- or indeterminate-risk category consists of those patients whose cardiac condition is uncertain, or whose risk profile is such that further testing or evaluation is indicated before the resumption of sexual activity. Based upon the results of testing, these patients may be subsequently assigned to either the high- or low-risk group. Cardiology consultation in some cases may help the primary physician in determining the relative safety of sexual activity for the individual patient.
2.2.3 **High-risk category**

The high-risk category consists of those patients whose cardiac condition is sufficiently severe and/or unstable that sexual activity may constitute a significant risk. Most patients are moderately to severely symptomatic. High-risk individuals should be referred for cardiac assessment and treatment. Sexual activity should be deferred until the patient’s cardiac condition has been stabilized by treatment, or a decision has been made by the cardiologist and/or internist that sexual activity may be safely resumed. Under some circumstances, the patient’s evaluation of risk relative to the need for sexual activity may lead to a discussion with the physician about the cardiovascular aspects of sexual activity, and the possible associated risks, and a more or less restrictive approach to resuming sexual activity.

2.3 **Specialized diagnostic tests**

Although the majority of patients with ED can be managed within the sexual care setting, specific diagnostic tests may be needed in certain circumstances (Table 3) and are summarized in Table 4.

2.3.1 **Nocturnal penile tumescence and rigidity (NPTR)**

The nocturnal penile tumescence and rigidity (NPTR) assessment should take place for at least two nights. The presence of an erectile event of at least 60% rigidity recorded on the tip of the penis, which lasts for 10 minutes or more, should be considered as indicative of a functional erectile mechanism (24).

2.3.2 **Intracavernous injection test**

The intracavernous injection test offers limited information regarding vascular status. A positive test is defined as a rigid erectile response (unable to bend the penis) that appears within 10 minutes after the intracavernous injection and lasts for 30 minutes (25). Such a response may indicate a functional but not necessarily normal erection, since an erection may coexist with arterial insufficiency or veno-occlusive dysfunction (26). Its clinical implication is that the patient will respond to the intracavernous injection programme. In all other cases, the test is inconclusive, and a duplex ultrasound of the penile arteries should be requested.

2.3.3 **Duplex ultrasound of penile arteries**

A peak systolic blood flow higher than 30 cm/sec and a resistance index higher than 0.8 are generally considered to be normal (25). There is no need to continue vascular investigation when the duplex examination is normal.
2.3.4 Arteriography and dynamic infusion cavernosometry or cavernosography
When it is abnormal, arteriography and dynamic infusion cavernosometry or cavernosography (DICC) should be performed only for patients who are considered potential candidates for vascular reconstructive surgery.

2.3.5 Psychiatric assessment
Patients with psychiatric disorders must be referred to a psychiatrist particularly interested in ED. For younger patients (< 40 years) with longstanding primary ED, psychiatric assessment may be helpful before any organic assessment is carried out.

2.3.6 Penile abnormalities
Patients with ED due to penile abnormalities, such as hypospadias, congenital curvature, or Peyronie’s disease with preserved rigidity, may require surgical correction with high success rates.

2.4 Patient education - consultation and referrals
The discussion considers patient’s expectations and needs, and should involve the physician, the patient and his partner. It should cover the patient’s understanding of the disorder, interpretation of the diagnostic tests and a rational selection of treatment options. Patient and partner education are essential components in the management of ED (27).

Table 3: Indications for specific diagnostic tests

<table>
<thead>
<tr>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary erectile disorder (not caused by organic disease, or psychogenic disorder)</td>
</tr>
<tr>
<td>Young patients with a history of pelvic or perineal trauma who could benefit from potentially curative vascular surgery</td>
</tr>
<tr>
<td>Patients with penile deformities (e.g. Peyronie’s disease, congenital curvature) that might require surgical correction</td>
</tr>
<tr>
<td>Patients with complex psychiatric or psychosexual disorders</td>
</tr>
<tr>
<td>Patients with complex endocrine disorders</td>
</tr>
<tr>
<td>Specific tests may be indicated at the request of the patient or his partner</td>
</tr>
<tr>
<td>Medicolegal reasons (e.g. implantation of penile prosthesis, cases of sexual abuse)</td>
</tr>
</tbody>
</table>

Table 4: Specific diagnostic tests

<table>
<thead>
<tr>
<th>Diagnostic Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nocturnal penile tumescence and rigidity (NTPR) using Rigiscan®</td>
</tr>
<tr>
<td>Vascular studies</td>
</tr>
<tr>
<td>- Intracavernous vasoactive drug injection</td>
</tr>
<tr>
<td>- Duplex ultrasound of the cavernous arteries</td>
</tr>
<tr>
<td>- Dynamic infusion cavernosometry or cavernosography (DICC)</td>
</tr>
<tr>
<td>- Internal pudendal arteriography</td>
</tr>
<tr>
<td>Neurological studies (e.g. bulbocavernosus reflex latency, nerve conduction studies)</td>
</tr>
<tr>
<td>Endocrinology studies</td>
</tr>
<tr>
<td>Specialized psychodiagnostic evaluation</td>
</tr>
</tbody>
</table>

3. TREATMENT

3.1 Treatment options
The primary goal in the management strategy of a patient with ED is to determine the aetiology of the disease and treat it when possible, and not to treat the symptom alone. It is clear that ED may be associated with modifiable or reversible factors, including lifestyle or drug-related factors, which may be modified prior to, or together with, the employment of specific therapeutic operations.

Erectile dysfunction can be treated successfully with current treatment options but certainly cannot be cured. The only exceptions to this rule are psychogenic erectile dysfunction, post-traumatic arteriogenic ED in young patients and hormonal causes (e.g. hypogonadism, hyperprolactinaemia), which can be potentially cured with specific treatment modalities.

The majority of men with erectile dysfunction will be treated with no cause-specific treatment options. This fact leads to a structured treatment strategy that depends on efficacy, safety, invasiveness and cost, as
Assess therapeutic outcome:
• Erectile response
• Side-effects
• Satisfaction with treatment

Consider penile prosthesis implantation

Inadequate treatment outcome

Assess adequate use of treatment options
Provide new instructions and counselling
Re-trial
Consider alternative or combination therapy

Identify patient needs and expectations
Shared decision-making
Offer conjoint psychosocial and medical treatment

Identify and treat ‘curable’ causes of ED
Lifestyle changes and risk factor modification
Provide education and counselling to patients and partners

Assess adequate use of treatment options
Provide new instructions and counselling
Re-trial
Consider alternative or combination therapy

Inadequate treatment outcome

Consider penile prosthesis implantation

PDE5 inhibitors
Apomorphine SL
Intracavernous injections
Intraurethral alprostadil
Vacuum devices

Treatement of erectile dysfunction
Besides efficacy and safety, patient and partner satisfaction, as well as other quality of life items, are important endpoints when assessing treatment options. A treatment algorithm for ED is presented in Figure 3.

3.2 Lifestyle management in ED with concomitant risk factors

The basic work-up must identify reversible risk factors for ED. Lifestyle changes and risk factor modification must precede or accompany ED treatment. These guidelines include lifestyle modification (e.g. weight loss, exercise) for ED, but also address psychosocial issues, adverse side-effects of prescription or non-prescription drugs and the presence of hypogonadism as a modifiable aetiology or comorbidity of ED.

The potential benefits of lifestyle changes may be of special relevance in individuals with ED and specific comorbid cardiovascular or metabolic diseases, such as diabetes or hypertension (9,29,30). For these men, the positive consequences of aggressive lifestyle changes may be of special benefit not only for improving erectile function, but also for improving overall cardiovascular and metabolic health. Recent studies support the potential value of lifestyle intervention, for both ED and overall health benefits (10).

Clearly, further studies are needed to expand and clarify the role of lifestyle changes in the management of ED and related cardiovascular disease (CVD). Lifestyle changes may be recommended independently or in combination with PDE5 therapy. Some studies have suggested that the therapeutic effects of PDE5 inhibitors may be enhanced if other comorbidities or risk factors are aggressively managed (31). Although suggestive, these results have yet to be confirmed in well-controlled, long-term studies. Given the success of pharmacological therapy for ED, clinicians in the future will need to provide specific evidence for the potential benefits of lifestyle change. Hopefully, further evidence for these benefits will become available in the future.

3.3 ‘Curable’ causes of ED

3.3.1 Hormonal causes

The advice of an endocrinologist is essential for patients with hormonal abnormalities. Testosterone deficiency may be a result of primary testicular failure or may be secondary to pituitary/hypothalamic causes, including a functional pituitary tumour resulting in hyperprolactinaemia.

3.3.1.1 Testosterone replacement therapy

Testosterone replacement (intramuscular, oral or transdermal) is effective, but can only be used when other possible endocrinological causes for testicular failure have been excluded. Testosterone replacement therapy is contraindicated in men with a history of prostate carcinoma or with symptoms of prostatism. Prior to initiating testosterone replacement, a digital rectal examination (DRE) and serum PSA test should be performed. Patients receiving androgen therapy should be monitored for clinical response as well as for the development of hepatic or prostatic disease.

There is no contraindication for testosterone therapy in men with coronary artery disease (CAD) with a properly diagnosed hypogonadism and/or ED. However, caution should be exercised regarding the occasional increase in haematocrit level, especially in those with congestive heart failure. It should be mentioned that this treatment is not always effective in the management of ED associated with hypogonadism (20).

3.3.2 Post-traumatic arteriogenic ED in young patients

In young patients with pelvic or perineal trauma, a surgical penile revascularization procedure is associated with a 60-70% long-term success rate. The lesion must be demonstrated by duplex ultrasound and confirmed by penile pharmaco-arteriography. The presence of corporeal veno-occlusive dysfunction is a contraindication to revascularization and must be excluded by DICC (15). Vascular surgery for the treatment of veno-occlusive dysfunction is no longer recommended due to poor results at long-term follow-up (14).

3.3.3 Psychosexual counselling and therapy

For patients with a significant psychological problem, psychosexual therapy may be given either alone or in combination with another therapeutic approach. Psychosexual therapy takes time and has been associated with variable results (32).

3.4 First-line therapy

3.4.1 Oral pharmacotherapy

The PDE5 enzyme hydrolyzes cyclic guanosine monophosphate (cGMP) in the cavernosum tissue of the penis. Inhibition of PDE5 results in increased arterial blood flow leading to smooth muscle relaxation, vasodilatation and penile erection (33).
Three potent selective PDE5 inhibitors are currently on the market approved by the European Medicines Agency (EMEA) and the US Food and Drug Administration (FDA) with proven efficacy and safety for the treatment of ED. They are not initiators of erection but require sexual stimulation in order to facilitate an erection.

3.4.1.1 Sildenafil
Sildenafil is the first PDE5 inhibitor. More than 20 million men have been treated over a 6-year post-marketing experience. It is effective (erection with rigidity sufficient for vaginal penetration) within 30-60 minutes from administration. Its efficacy is reduced after a heavy fatty meal due to prolonged absorption. It is administered in 25, 50 and 100 mg doses. The recommended starting dose is 50 mg and should be adapted according to the patient’s response and side-effects. Efficacy may be maintained for up to 12 hours (34). The pharmacokinetic data of sildenafil are presented in Table 5. Adverse events (Table 6) are generally mild in nature and self-limited by continuous use, with the drop-out rate due to adverse events similar to placebo (35).

In pre-marketing studies, after 24 weeks of treatment in a dose-response study, improved erections were reported by 56%, 77% and 84% of men taking 25, 50 and 100 mg of sildenafil, respectively, compared with 25% of men taking placebo (11). Sildenafil statistically improved IIEF, sexual encounter profile 2 (SEP2), SEP3 and general assessment question (GAQ) and satisfaction scores.

The efficacy of sildenafil in almost every subgroup of patients with ED has been successfully established (36). In diabetic patients, 66.6% reported improved erections (GAQ) and 63% successful intercourse attempts, respectively, compared with 28.6% and 33% of men taking placebo (37). In patients after bilateral nerve-sparing radical prostatectomy, 76% responded to sildenafil (defined as successful vaginal intercourse) (38).

3.4.1.2 Tadalafil
Tadalafil is effective from 30 minutes after administration, but its peak efficacy is expected in about 2 hours’ time. Efficacy is maintained for up to 36 hours (39). Its efficacy is not influenced by food. It is administered in 10 and 20 mg doses. The recommended starting dose is 10 mg and should be adapted according to the patient’s response and side-effects. Pharmacokinetic data of tadalafil are presented in Table 5. Adverse events (Table 6) are generally mild in nature, self-limited by continuous use, and the drop-out rate due to adverse events is similar to placebo (40).

In pre-marketing studies, after 12 weeks of treatment and in a dose-response study, improved erections were reported by 67% and 81% of men taking 10 mg and 20 mg of tadalafil compared with 35% of men in the control placebo group (13). Tadalafil statistically improved IIEF, SEP2, SEP3 and GAQ and satisfaction scores. These results were confirmed in post-marketing studies (41).

Tadalafil also improved erections in difficult-to-treat subgroups. In diabetic patients, 64% reported improved erections (i.e. improved GAQ) compared to 25% of patients in the control group and the final IIEF erectile function domain score change was 7.3 compared to 0.1 for placebo (42). In patients after bilateral nerve-sparing radical prostatectomy, the mean percentage of successful penetration attempts was 54% and the mean percentage of successful intercourse attempts was 41%. For a subgroup with evidence of postoperative tumescence, these values were 69% and 52%, respectively. Improved erections were reported by 62% of all patients randomized to tadalafil and 71% of subgroup patients randomized to tadalafil (43).

3.4.1.3 Vardenafil
Vardenafil is effective after 30 minutes from administration. Its effect is reduced by a heavy fatty meal (> 57% fat). It is administered in 5, 10 and 20 mg doses. The recommended starting dose is 10 mg and should be adapted according to the patient’s response and side-effects. In vitro, it is 10-fold more potent than sildenafil; however, this does not necessarily imply greater clinical efficacy (44). Pharmacokinetic data of vardenafil are presented in Table 5. Adverse events (Table 6) are generally mild in nature and self-limited by continuous use, with a drop-out rate similar to placebo (45).

In pre-marketing studies, after 12 weeks of treatment and in a dose-response study, improved erections were reported by 66%, 76% and 80% of men taking 5 mg, 10 mg and 20 mg of vardenafil, respectively, compared with 30% of men taking placebo (46). Vardenafil statistically improved IIEF, SEP2, SEP3 and GAQ and satisfaction scores. Efficacy is confirmed in post-marketing studies (47).

Vardenafil has also improved erections in difficult-to-treat subgroups. In diabetic patients, 72% reported improved erections (i.e. improved GAQ) compared to 13% of patients taking placebo and the final IIEF erectile function domain score was 19 compared to 12.6 for placebo (48). In patients after bilateral nerve-sparing radical prostatectomy, the average intercourse success rate per patient receiving 20 mg vardenafil was 74% in men with mild to moderate ED and 28% in men with severe ED, compared to 49% and 4% for placebo, respectively. Positive GAQ responses were reported by 71.1% of patients (49).
3.4.1.4 Choice or preference between the different PDE5 inhibitors

To date, no data are available from double- or triple-blind multicentre studies comparing the efficacy and/or the preference for sildenafil, tadalafil and vardenafil. Patients should be informed about the effects (short- or long-acting) and possible disadvantages of each drug, as well as on how to use the drug. The frequency of intercourse (occasional use or regular therapy, 3-4 times weekly) and personal experience will determine the drug of choice. Before being considered to be non-effective and replaced by another PDE5 inhibitor, each drug should be administered at least four times.

Table 5: Summary of the key pharmacokinetic data for the three PDE5 inhibitors (fasted state, higher recommended dose, data from EMEA statements on product characteristics)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sildenafil 100 mg</th>
<th>Tadalafil 20mg</th>
<th>Vardenafil 20 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax</td>
<td>560 µg/L</td>
<td>378 µg/L</td>
<td>18.7 µg/L</td>
</tr>
<tr>
<td>Tmax</td>
<td>0.8 - 1 h</td>
<td>2 h</td>
<td>0.9 h</td>
</tr>
<tr>
<td>T1/2</td>
<td>2.6 – 3.7 h</td>
<td>17.5</td>
<td>3.9 h</td>
</tr>
<tr>
<td>AUC</td>
<td>1685 µg.h/L</td>
<td>8066 µg.h/L</td>
<td>56.8 µg.h/L</td>
</tr>
<tr>
<td>Protein binding</td>
<td>96%</td>
<td>94%</td>
<td>94%</td>
</tr>
<tr>
<td>Bioavailability</td>
<td>41%</td>
<td>NA</td>
<td>15%</td>
</tr>
</tbody>
</table>

Cmax: maximal concentration, Tmax: time to maximum plasma concentration; T1/2: plasma elimination half-time; AUC: area under curve - serum concentration time curve.

Table 6: Common adverse events of all three PDE5 inhibitors (from EMEA statements on product characteristics)

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Sildenafil</th>
<th>Tadalafil</th>
<th>Vardenafil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>12.8%</td>
<td>14.5%</td>
<td>16%</td>
</tr>
<tr>
<td>Flushing</td>
<td>10.4%</td>
<td>4.1%</td>
<td>12%</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>4.6%</td>
<td>12.3%</td>
<td>4%</td>
</tr>
<tr>
<td>Nasal congestion</td>
<td>1.1%</td>
<td>4.3%</td>
<td>10%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>1.2%</td>
<td>2.3%</td>
<td>2%</td>
</tr>
<tr>
<td>Abnormal vision</td>
<td>1.9%</td>
<td></td>
<td><2%</td>
</tr>
<tr>
<td>Back pain</td>
<td>6.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myalgia</td>
<td>5.7%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.1.5 Safety issues for PDE5 inhibitors

Cardiovascular safety

Clinical trial results and post-marketing data of sildenafil, tadalafil and vardenafil demonstrated no increase in myocardial infarction rates in patients that received these agents, as part of either double-blind, placebo-controlled trials or open-label studies, or compared to expected rates in age-matched populations of men. None of the PDE5 inhibitors were found to adversely affect total exercise time or time to ischaemia during exercise testing in men with stable angina (50-52). In fact, they may actually improve exercise tests. Sildenafil does not alter cardiac contractility, cardiac output or myocardial oxygen consumption based on evidence reviewed to date.

Nitrates are totally contraindicated with PDE5 inhibitors

Organic nitrates (e.g. nitroglycerine, isosorbide mononitrate, isosorbide dinitrate) and other nitrate preparations used to treat angina, as well as amyl nitrite or amyl nitrate (‘poppers’ used for recreation) are absolute contraindications with the use of PDE5 inhibitors. They result in cGMP accumulation and unpredictable falls in blood pressure and symptoms of hypotension. The duration of interaction between organic nitrates and PDE5 inhibitors is dependent upon the PDE5 inhibitor and nitrate under study.

If a PDE5 inhibitor is taken and the patient develops chest pain, nitroglycerine must withheld for at least 24 hours if sildenafil (and likely vardenafil) was used (half-life, 4 hours) and for at least 48 hours if tadalafil was used (half-life, 17.5 hours). If a patient develops angina while taking a PDE5 inhibitor, other agents may be administered instead of nitroglycerine until the appropriate time has passed. If nitroglycerine must be reintroduced following administration of a PDE5 inhibitor, the patient should receive it only after an appropriate interval has elapsed, as described above and under close medical observation.
Antihypertensive drugs
Co-administration of PDE5 inhibitors with antihypertensive agents (angiotensin converting enzyme inhibitors, angiotensin receptor blockers, calcium blockers, betablockers, diuretics) may result in small additive drops in blood pressure, which are usually minor. In general, the adverse event profile of the PDE5 inhibitor is not worsened by a background of antihypertensive medicines, even when the patient is on multiple antihypertensive agents.

Alpha blocker interactions
All PDE5 inhibitors appear to have some interaction with alpha blockers, which under some conditions may result in orthostatic hypotension. Sildenafil labelling currently describes a precaution advising that 50 or 100 mg (not 25 mg) of sildenafil should not be taken within a 4-hour window of an alpha blocker. In the USA, vardenafil is absolutely contraindicated with alpha blockers. However, the co-administration of vardenafil with tamsulosin is not associated with clinical significant hypotension (53). Tadalafil is contraindicated in patients taking alpha blockers, except for tamsulosin 0.4 mg (54). These interactions are more pronounced when PDE5 inhibitors are given to healthy volunteers not previously taking alpha blockers. Additional studies with other PDE5 inhibitors and other alpha blockers (e.g. alfuzosin OD) or mixed alpha/beta blockers (e.g. carvedilol, labetalol) are needed to improve understanding of the interaction between these two classes of agents.

Dosage adjustments
Certain drugs can inhibit the metabolic breakdown of PDE5 inhibitors (by inhibiting the CYP3A4 pathway), such as ketoconazole, itraconazole, erythromycin, clarithromycin and HIV protease inhibitors (ritonavir, saquinavir). Such agents may increase blood levels of PDE5 inhibitors and may require lower doses of PDE5 inhibitors. On the other hand, other agents, such as rifampin, phenobarbital, phentoyin and carbamazepine, may induce CYP3A4 and enhance the breakdown of PDE5 inhibitors, so that higher doses of PDE5 inhibitors are required. Severe kidney or hepatic dysfunction may require dose adjustments or warnings.

3.4.1.6 Apomorphine sublingual
Apomorphine is a centrally acting drug (dopamine agonist, mainly D2) that improves erectile function by enhancing the natural central erectile signals that normally occur during sexual stimulation (55,56). It is administered sublingually on demand in 2 or 3 mg doses. Apomorphine has been approved for erectile dysfunction treatment in several countries but not in the USA.

 Efficacy rates (erections sufficient for intercourse) range from 28.5% to 55% (57-59). Due to rapid absorption, 71% of erections are achieved within 20 minutes. The most common adverse events are nausea (7%), headache (6.8%) and dizziness (4.4%) (58). These events are generally mild in nature and self-limited (60). Severe events, such as syncope, are extremely rare (< 0.2%) (61). Apomorphine is not contraindicated in patients taking nitrates or antihypertensive drugs of all classes and it does not affect vital signs (62). There was no marked improvement in sexual desire but a slight improvement in orgasmic function was noticed (63).

 Comparative studies clearly show that apomorphine is associated with significantly lower efficacy and satisfaction rates than sildenafil (64,65). The most significant strength of apomorphine is its safety profile (66). Even in pre-marketing studies apomorphine improves erectile function, intercourse and overall satisfaction domains of the IIEF, significantly better than placebo. Its use is limited to patients with mild to moderate erectile dysfunction or psychogenic causes due to reduced efficacy rates. It may also be a first-line treatment in patients with certain contraindications for the use of PDE5 inhibitors, such as the use of nitrates.

3.4.1.7 Other oral agents
Several other drugs have been used in the treatment of ED with various mechanisms of action (67). Yohimbine is a centrally and peripherally active α2 adrenergic antagonist used as an aphrodisiac for almost a century. Delequamine is a more specific and selective α2-adrenergic antagonist than yohimbine. Trazodone is a serotonin reuptake inhibitor (antidepressant) that has been associated with prolonged erections and priapism. It is also a non-selective α-adrenergic antagonist in the corporal smooth muscle cells. L-arginine is a nitric oxide donor and nalmefine/naltrexone is an opioid-receptor antagonist. Red Korea ginseng is a formulation with a currently unknown mechanism of action (though it may possibly act as a nitric oxide donor). Limaprost is an alprostadil derivative for oral use. Finally, an oral formulation of phentolamine (non-selective α-adrenergic antagonist) underwent phase III clinical trials (68).

 Results from randomized studies showed that the efficacy of yohimbine and trazodone is similar to placebo in patients with organic causes of ED (69,70). Studies on oral phentolamine showed efficacy rates (erections sufficient for intercourse) of about 50% (68). Possible carcinogenesis in animal models stopped further development of the drug. Efficacy data on Red Korea ginseng show that it may have a role in treatment of ED (71). There are no efficacy data on all other drugs. Today, there is no place for these drugs in the treatment of ED.
3.5 Topical pharmacotherapy
Several vasoactive drugs (2% nitroglycerine, 15-20% papaverine gel and 2% minoxidil solution or gel) have been used for topical application to the penis. In order to overcome the poor drug absorption through the thick and dense tunica albuginea, several drug absorption enhancers have been developed for combination with vasoactive drugs (72). A combination (Topiglan™) of alprostadil gel 1% with 5% SEPA® (enhancer of absorption) resulted in an erection sufficient for vaginal penetration in 38.9% of patients compared with 6.9% of patients who received placebo (73). Adverse events include skin and glans erythema, burning sensation, allergic reactions and side-effects in the partner (hypotension, headache) due to absorption from the vagina. No topical therapy has been approved and their role in the treatment of ED is currently unknown.

3.6 Vacuum constriction devices
Vacuum constriction devices (VCD) provide passive engorgement of the corpora cavernosa in conjunction with a constrictor ring placed at the base of the penis to retain blood within the corpora. Thus, erections with these devices are not normal since they do not use physiological erection pathways. Efficacy, in terms of erections satisfactory for intercourse, is as high as 90%, regardless of the cause of ED and satisfaction rates range between 27% and 94% (74). Men with a motivated, interested and understanding partner report the highest satisfaction rates. Long-term use of VCDs drops to 50-64% after 2 years (75). Most men who discontinue use of VCDs do so within 3 months.

Common adverse events include pain, inability to ejaculate, petechiae, bruising and numbness (30% of patients). These are the most common adverse events found in less than 30% of patients (76). Serious adverse events (skin necrosis) can be avoided if patients remove the constriction ring within 30 minutes. VCD are contraindicated in patients with bleeding disorders or on anticoagulant therapy.

VCDs are generally not accepted by younger patients. However, they may be the treatment of choice in well-informed older patients with infrequent sexual intercourses and the presence of comorbidities that demand a non-invasive, drug-free management of ED.

3.7 Second-line therapy
Patients not responding to oral drugs may be offered intracavernous injections with high success rates of 85% (77).

3.7.1 Intracavernous injections
3.7.1.1 Alprostadil
Intracavernous administration of vasoactive drugs was the first medical treatment for ED more than 20 years ago (78).

Alprostadil (Caverject™, Edex/Viridal™) is the first and only drug approved for intracavernous ED treatment (79). It is the more efficacious monotherapy for intracavernous treatment in 5-40 µg doses. The erection appears after 5-15 minutes and lasts according to the dose injected. An office-training programme (one or two visits) is required for the patient to learn the correct injection process. In cases of limited manual dexterity, the technique may be taught to their partners. The use of an automatic special pen that avoids a view of the needle can resolve the fear of the penile puncture and can simplify the technique.

Efficacy rates for intracavernous alprostadil of more than 70% have been found in general ED populations, as well as in patient subgroups (e.g. diabetes or cardiovascular disease), with reported sexual activity after 94% of the injections and satisfaction rates of 87-93.5% in patients and 86-90.3% in partners (80,81).

Complications of intracavernous alprostadil include penile pain (50% of patients, after 11% of injections), prolonged erections (5%), priapism (1%) and fibrosis (2%) (79,82). Pain is usually self-limited after prolonged use. It can be alleviated with the addition of sodium bicarbonate or local anaesthetic (83,84). Fibrosis requires temporary discontinuation of the injection programme for several months. Systemic side-effects are uncommon. The most common is mild hypotension especially when using higher doses.

Contraindications include men with a history of hypersensitivity to alprostadil, men at risk of priapism and men with bleeding disorders.

Despite these favourable data, intracavernous pharmacotherapy is associated with high drop-out rates and limited compliance. Drop-out rates of 40.7-68% have been described (85,86), with most patients who discontinue treatment do so within the first 2-3 months. In a comparative study, alprostadil monotherapy had the lowest discontinuation rates (27.5%) compared to overall drug combinations (37.6%), with an attrition rate after the first months of therapy of 10% per year (87). Reasons for discontinuation included desire for a permanent modality of therapy (29%), lack of a suitable partner (26%), poor response (23%), especially in the early drop-out rate, fear of needles (23%), fear of complications (22%) and lack of spontaneity (21%) (88,89). Careful counselling of patients during the office-training phase as well as close follow-up is important in addressing patient withdrawal from an intracavernous injection programme.

Today, intracavernous pharmacotherapy is considered a second-line treatment. Patients not responding to oral drugs may be offered intracavernous injections with high success rates of 85% (77,89).
Most long-term injection users can switch to sildenafil despite underlying pathophysiology (90,91). However, almost one-third of long-term intracavernous injections users who subsequently responded also to sildenafil preferred to continue with an intracavernous injection programme (92,93).

Action to be taken with prolonged erection

After 4 hours of erection, patients are advised to consult the doctor to avoid any damage to the intracavernous muscle, which would provoke permanent impotence. A 19-gauge needle is used to aspirate blood and thereby decrease intracavernous pressure. This simple method is usually sufficient to make the penis flaccid.

However, if the penis becomes rigid again after this, phenylephrine intracavernous injection is required, starting at a dose of 200 µg every 5 minutes and increasing to 500 µg if necessary. The risk of having a prolonged erection during following subsequent injections cannot be predicted. When this problem occurs, the dose is usually reduced for the next injection.

3.7.1.2 Combination therapy

The rationale for combination treatment is to take advantage of different modes of action as well as to alleviate side-effects by using lower doses of each individual drug.

Papaverine (20-80 mg) was the first oral drug used for intracavernous injections. It is not used today as monotherapy due to a higher incidence of adverse events.

Phentolamine is another drug that has been used in combinations augmenting efficacy although alone it has a poor erectile response.

Sparse data in the literature support the use of other drugs, such as vasoactive intestinal peptide (VIP), nitric oxide (NO) donors (linsidomine), forskolin, potassium channel openers, moxisylyte or calcitonin gene-related peptide (CGRP), mostly in combinations with the main drugs (94,95). Most of the combinations are not standardized and some drugs have limited availability worldwide.

The combinations of papaverine (7.5-45 mg) plus phentolamine (0.25-1.5 mg), and of papaverine (8-16 mg), phenolamine (0.2-0.4 mg) plus alprostadil (10-20 µg), have been widely used with better efficacy rates (especially the latter), although they have never received approval for the treatment of ED (96,97). The combination regimen of papaverine, phenolamine and alprostadil was associated with the highest efficacy rates reaching 92% (97,98), with similar complications to alprostadil. The incidence of penile pain is lower (due to lower doses of alprostadil). However, fibrosis is more common (5-10%) when papaverine is used (depending on total dose), and mild hepatotoxicity has been reported with papaverine (99).

Despite high efficacy rates, 5-10% of patients will not respond to combination intracavernous injections. The combination of sildenafil with intracavernous injection of the triple combination solution may salvage as many as 31% of patients not responding to the triple combination alone (100). However, combination therapy was associated with an incidence of adverse effects in 33% of patients, including dizziness in 20% of patients.

This strategy can be considered in carefully selected patients before proceeding to implantation of a penile prosthesis.

3.7.1.3 Intraurethral alprostadil

A specific formulation of alprostadil (125-1000 µg) in a medicated pellet (MUSE™) has been approved for use in erectile dysfunction patients (101). A vascular interaction exists between the urethra and the corpora cavernosa that permits drug transfer between these structures (102). Erections sufficient for intercourse were achieved in 30-65.9% of patients (101,103,104). In clinical practice, only the higher doses (500 and 1000 µg) were encountered and consistency rates were low (105). The application of a constriction ring at the root of the penis (ACTISTR™) may improve efficacy (106).

The most common adverse events are local pain (29-41%) and dizziness (1.9-14%). Penile fibrosis and priapism are very rare (< 1%). Urethral bleeding (5%) and urinary tract infections (0.2%) are adverse events related to the mode of administration (78).

Efficacy rates are significantly lower than intracavernous pharmacotherapy (107). Intraurethral pharmacotherapy is a second-line therapy, providing an alternative to intracavernous injections in patients who prefer a less invasive, but less efficacious, treatment.

3.8 Third-line therapy

3.8.1 Penile prosthesis

The surgical implantation of a penile prosthesis may be considered in patients who fail pharmacotherapy or who prefer a permanent solution to their problem. Two types of prosthesis exist: malleable (semi-rigid) and inflatable (two- or three-piece).

Most patients prefer the three-piece inflatable devices due to the more ‘natural’ erections obtained. However, the two-piece inflatable prosthesis can be a reliable option with fewer mechanical complications and
a simpler implantation technique. A semi-rigid prosthesis provides a constantly rigid penis and can be a choice in older patients with infrequent sexual intercourse (108). The inflatable prosthesis is much more expensive. In several countries, patients are reimbursed for the cost of the prosthesis, but an organic cause has to be determined for the ED and the patient has to undergo a complete impotence assessment.

Prosthesis implantation has one of the highest satisfaction rates (70-87%) among treatment options for ED based on appropriate consultation (109,110).

The two main complications of penile prosthesis implantation are mechanical failures and infection. Several technical modifications of the most commonly used three-piece prosthesis (AMS 700CX/CXM™ and Mentor Alpha I™) resulted in mechanical failure rates of less than 5% in the long-term (5-year follow-up) (111,112). Careful surgical technique with proper antibiotic prophylaxis against gram-positive and gram-negative bacteria reduced infections rates to 2-3% (113). The infection rate may be further reduced (to 1%) with the implantation of an antibiotic-impregnated prosthesis (AMS Inhibizone™) or hydrophilic-coated prosthesis (Mentor Titan™) (114,115).

Although diabetes is considered to be one of the main risk factors for infection, current data do not support this fact (108). Infections, as well as erosions, are significantly higher (9%) in patients with spinal cord injuries (9%) (116). Infection requires removal of the prosthesis, antibiotic administration and reimplantation after 6-12 months. However, a salvage therapy with removal and reimplantation at the same time, after copious irrigation of the corpora with multi-drug solutions, is associated with 82% success rates (117).

4. CONCLUSION

A great deal of progress has been made in the pharmacological treatment of ED. Modern treatment of ED has been revolutionized by the worldwide availability of the three PDE5 inhibitors (sildenafil, tadalafil, vardenafil) for oral use, which are associated with high efficacy and safety rates, even in difficult-to-treat populations (e.g. diabetes mellitus, radical prostatectomy). Patients should be encouraged to try all three PDE5 inhibitors and to develop their own opinions. They will choose the compound perceived by them to have the best efficacy, as well as considering other features such as time of onset, duration of action, window of opportunity and their own individual experience with side-effects.

Treatment options for patients not responding to oral drugs (or contraindicated) include intracavernous injections, intraurethral alprostadil, vacuum constriction devices and implantation of penile prosthesis.

It must be emphasized that the physician should warn the patient that sexual intercourse is considered to be a vigorous physical activity, which increases heart rate as well as cardiac work. Physicians should assess the cardiac fitness of patients prior to treating ED.

Any successful pharmacological treatment for erectile failure demands a degree of integrity of the penile mechanisms of erection. Further studies of individual agents and synergistic activity of available substances are underway. The search for the ideal pharmacological therapy for erectile failure aims at fulfilling the following characteristics: good efficacy, easy administration, freedom from toxicity and side-effects, with a rapid onset and a possible long-acting effect.
5. REFERENCES

6. **ABBREVIATIONS USED IN THE TEXT**

This list is not comprehensive for the most common abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>area under curve - serum concentration time curve</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>CGRP</td>
<td>calcitonin gene-related peptide</td>
</tr>
<tr>
<td>CHF</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>Cmax</td>
<td>maximal concentration</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>DICC</td>
<td>dynamic infusion cavernosometry or cavernosography</td>
</tr>
<tr>
<td>DRE</td>
<td>digital rectal examination</td>
</tr>
<tr>
<td>ED</td>
<td>erectile dysfunction</td>
</tr>
<tr>
<td>EMEA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>FDA</td>
<td>(US) Food and Drug Administration</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle-stimulating hormone</td>
</tr>
<tr>
<td>GAQ</td>
<td>General Assessment Question</td>
</tr>
<tr>
<td>IIIEF</td>
<td>International Index for Erectile Function</td>
</tr>
<tr>
<td>LH</td>
<td>luteinizing hormone</td>
</tr>
<tr>
<td>LV</td>
<td>left ventricular dysfunction</td>
</tr>
<tr>
<td>MET</td>
<td>metabolic equivalent of energy expenditure in the resting state</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>MMAS</td>
<td>Massachusetts Male Aging Study</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NPTR</td>
<td>nocturnal penile tumescence and rigidity</td>
</tr>
<tr>
<td>NYHA</td>
<td>New York Heart Association</td>
</tr>
<tr>
<td>PDE</td>
<td>phosphodiesterase</td>
</tr>
<tr>
<td>PSA</td>
<td>prostate-specific antigen</td>
</tr>
<tr>
<td>SEP</td>
<td>sexual encounter profile</td>
</tr>
<tr>
<td>T1/2</td>
<td>plasma elimination half-time</td>
</tr>
<tr>
<td>Tmax</td>
<td>time to maximum plasma concentration</td>
</tr>
<tr>
<td>VCD</td>
<td>vacuum constriction devices</td>
</tr>
<tr>
<td>VIP</td>
<td>vasointestinal peptide</td>
</tr>
</tbody>
</table>